Lua C Bindings

The Mako Server lets developers easily work with the integrated SQLite engine using Lua, but sometimes a more advanced database such as PostgreSQL is required. PostgreSQL supports clustering and high availability (HA) which are particular useful if you plan on using the Mako Server to power your IoT solution. In the article Setting Up a Low Cost IoT Server , we uncover how easy it is to run the Mako Server as an online service without going into detail on IoT data management. Since the Mako Server supports IoT clustering , but not HA storage, PostgreSQL complements the Mako Server's IoT clustering feature with its awesome database that supports HA storage.

PostgreSQL as a Service

Setting up a PostgreSQL HA cluster is beyond the scope of this tutorial. To simplify things, we will instead use ElephantSQL, which provides PostgreSQL as an online service. ElephantSQL is super easy to use, and they provide a free plan which is perfect for anyone wanting to learn more about PostgreSQL.

Automatic Lua C bindings. Discussion I had an idea to use ctags to read in a header file of a c library and then automatically generate a c file that contains lua bindings.

Sign up for the free Tiny Turtle ElephantSQL plan if you want to follow along this tutorial. After signing up, navigate to your PostgreSQL's details page. You should see a page similar to the following:

Figure 1: ElephantSQL Dashboard

PostgreSQL Lua Bindings

Mako Server does not come with a ready to use integrated interface to PostgreSQL; however, adding the needed interface is not complicated. A search for 'PostgreSQL Lua' provides several options, and the one we have tested and made Mako Server friendly is the luapgsql Lua bindings. Installing the bindings is explained in the next section. The following Lua Server Pages (LSP) script can be run when the bindings are installed.

Figure 2: Connect to ElephantSQL, create table 'test', and insert data into table 'test'.

In Figure 2, we create the string 'cinfo' and format the string with the connection information and credentials provided in Figure 1. This information is passed into the 'connectdb' function. If you look in the 'connectdb' function documentation , you will see that it does not explain the input parameter format. You must look in the PostgreSQL's libpq Database Connection String Parameters for details. The pgsql library provides Lua bindings for PostgreSQL's libpq C library, and you may want to consult the documentation for both libraries when working with the Lua API.

Compiling and Installing the PostgreSQL Lua Bindings

The following instructions are designed for Linux, but the commands also work on Windows 10 with the Linux sub system. It's super easy to install and use the 'Windows Subsystem for Linux'. Just open the Windows 10 Store and search for Ubuntu. See this tutorial if you feel you need more information.

Open a shell and run the following commands:

sudo apt-get updatesudo apt-get install libpq-dev gcc git unzip sed wget lua5.2

Figure 3: Installing the required PostgreSQL's libpq C build tools

The second command (Figure 3) installs PostgreSQL's libpq C library and a number of utilities needed when building 'pgsql'.

The PostgreSQL Lua Bindings 'pgsql' must be downloaded from github and compiled on your computer. However, you should use a compilation script we have prepared. The compilation script makes the 'pgsql' library Mako Server friendly by adding wrappers around each Lua binding (function). Many of the functions provided by 'pgsql' block on database response messages and take time to execute. The wrappers make sure the multithreaded Mako Server can continue executing other threads when 'pgsql' functions block the current thread. You do not need to understand the details behind the function wrappers, but if you want to understand how they work, see the releasing the global mutex tutorial. The compilation script automatically adds the wrappers to 'pgsql' by using the Mutex wrapper script generator .

Download and run the PostgreSQL Lua Bindings 'pgsql' build script as follows:

cd /tmpwget /download/PostgreSQL.tar.gztar xvzf PostgreSQL.tar.gzcd PostgreSQL./

Figure 4: How to download the PostgreSQL's libpq C build script

The above script compiles 'pgsql' and produces the file This file must be copied to a directory where the Mako Server, or more specifically, the Mako Server's integrated Lua engine can find the shared library. A suggestion is to run the script in Figure 2 and look at the error message produced when the library is not found. Any of the paths printed in the 'not found' error message can be used as the destination directory for

The following example shows how to copy the shared library built in Figure 4 to /usr/bin and how to install the Mako Server.

sudo cp luapgsql/ /usr/bin/#Replace XXX below with the platform specific namewget xvzf mako.raspberrypi.tar.gzsudo cp mako /usr/bin/

Figure 5: How to optionally install the shared library and Mako Server in /usr/bin/

Using the PostgreSQL Lua Bindings

You may use the Lua code in Figure 2 as soon as the 'pgsql' module is installed as explained above. See the getting started guide for how to copy the code in Figure 2 to a Mako Server app directory.

If you run the code in Figure 2, you will notice that it takes some time for the LSP page to complete. Most of the time is spent on connecting to the ElephantSQL (See Figure 2, line 8 - connecting). You may open multiple browser windows and run the same code. Each page opens a new connection. The Mako Server includes an LSP/HTTP thread pool and runs each LSP page in its own native thread. You may have multiple concurrent ElephantSQL requests thanks to the wrappers added to the 'pgsql' module by the compilation script. See the previous section for details.

Using a PostgreSQL service as shown in Figure 2 works, but may not be the optimal solution for several reasons:

  • The connection establishment takes time.
  • Each LSP page requires its own TCP connection and may exhaust the ElephantSQL tiny turtle plan's max 5 connections.
  • A PostgreSQL query blocks until the PostgreSQL server responds, which may take time. Using a PostgreSQL connection via an asynchronous cosocket including the SMQ broker would freeze the server until the PostgreSQL server sends the response message.

Using One PostgreSQL TCP Connection For All Database Interactions

Using one DB connection object for all PostgreSQL interactions eliminates the issues listed above. However, only one dedicated thread can use the PostgreSQL connection object safely. What we need to do is to make sure all LSP pages and cosockets delegate the PostgreSQL interactions to one thread and that this thread is the only thread that operates on the database. This can easily be solved by using the Lua thread library. The following code snippet creates a dedicated thread for PostgreSQL interaction, by calling ba.thread.create(), and provides a global function dbexec() that can be used by any LSP page or any other code that wants to interact with the database.

Figure 6: Creating a dedicated PostgreSQL interaction thread and DB worker function.

An LSP page can then delegate execution of a callback function to the thread as follows:

Figure 7: Creating a PostgreSQL function that executes in the context of the thread in Figure 6.

In the above code snippet, an LSP page creates a callback function 'run' and calls the global dbexec function, passing in the callback. The function 'run' will then execute in the context of the 'dbthread' and not in the context of the LSP page. The thread library provides a queuing mechanism, and concurrent LSP page requests are queued in the internal thread queue. Each callback function is executed by the thread in order, thus making sure that only one thread operates on the DB connection object.

Download Example Code

Download a ready to run example from GitHub.

Related SQL Articles

Posted in Tutorials


Lua can be embedded and extended[1] with code or applications written in other languages. Code and values in another language can be exposed to Lua and vice-versa. The following lists low and high level solutions for binding between Lua and other languages.


The most direct method to bind to Lua is with the Lua C API. The C API consists of two parts: the basic API (lua.h) provides the primitive functions for all interactions between C and Lua, while the auxiliary library (lauxlib.h) provides higher-level functions for some common tasks.[2]

  • [The Lua 5.1 Reference Manual: The Application Program Interface] (5.1) describes Lua's native C API for calling Lua from C and vice-versa.
  • See also Lua book [PIL2]. Or read about the C API online in the 1st edition of PIL: [PIL1 - The C API]
  • An introductory video on embedding Lua in C++: [Embedding Lua in C++ #1]
  • A tutorial for embedding Lua in C: [Embedding Lua in C]

Enabling API checking

By default, the Lua C API does almost no sanity checking of arguments passed to it. Passing incorrect stack indexes, for example, can result in segfaults or random data corruption. You should always enable API checking in any debug build. You can do this by compiling with the option -DLUA_USE_APICHECK. luaconf.h uses this C macro to define luai_apicheck to call assert() in various places (you can also edit this definition to do something possibly more useful).


Some examples of using the C API can be found by examining the source code of Lua's own standard libraries (src/*lib.c}. For example, the math library (math.*) is implemented in the file src/lmathlib.c. The basic form of this file is outlined below. First we import various headers, including the C API (lua.h) and the auxiliary library (lauxlib.h):

Then various Lua functions implemented in C are defined. These all have the same signature, and arguments are passed via Lua's own stack. For example, the sin function is defined as follows. luaL_check_number() is used to check the correct type of the sin function argument. lua_pushnumber() is used to return the sine calculated. Note, the return value of the math_sin() function is the number of values returned (lua functions can return many values).

These functions are registered into Lua by building a table of function pointers and names and then calling luaL_register(). Constants pi and huge are set separately. This registration code is placed in a function named luaopen_math(), which can be called statically (e.g. from linit.c) or dynamically (via Lua's shared library loading mechanism via require).

Binding C/C++ with Lua


  • [LuaAutoC] (5.2) - Automatically wrap C functions and structs at runtime.
  • [LuaNativeObjects] (5.1) - A C bindings generator written in Lua. It turns C structs into objects.
  • [luapi] (5.0) - a C API over the official Lua API.
  • [CaLua] (5.0) - A way to bind C functions and structures to Lua, and work with C pointers, arrays and functions in Lua. (uses x86 assembly)

C Foreign Function Interfaces (FFI)

  • [Alien] (5.1) - a foreign function interface (FFI) for Lua. An [FFI] lets Lua code call C functions directly without having to write C 'glue', so you can use Alien to write C extensions purely in Lua. (Wraps libffi)
  • [C/Invoke for Lua] (5.1) - Use [C/Invoke] from Lua to call C libraries (DLLs, .so files) directly, like Microsoft's P/Invoke and Python's ctypes. (Similar to Alien)
  • [The LuaJIT FFI] allows calling external C functions and using C data structures from Lua code. It parses plain C declarations and supports C99 plus some GCC/MSVC/C++ extensions.
  • [luaffi] (5.1) - an implementation of LuaJIT FFI for Lua.
  • [cffi-lua] (5.1, LuaJIT, 5.2, 5.3, 5.4) - Mostly compatible with the LuaJIT FFI (but integrates with new Lua versions), but portable (libffi based) and implemented from scratch.

C Inline

  • [lua-tcc] (5.1) - Simple interface to TCC, a fast runtime C compiler by Fabrice Bellard, it allows a Lua script to compile C code and register it at runtime as Lua-callable C funcions. Intentionally limited to avoid TCC's bug with multi-environments, that would be too tempting in Lua.
  • [Luatcc] (5.1) - another, more complete, Lua binding for libtcc, which is the core library of the [Tiny C Compiler]. It allows compiling and loading C code directly from Lua, includes the ability to load C modules directly from C source.
  • InlineCee provides a similar approach, invoking other compilers out-of-process.


Various C++ or C++ template bindings have been developed to simplify the process in C++:

  • [MiniLua (5.3, 5.4)] - Minimal Lua interface for loading a lua-file and getting values into your C++-application.
  • [Lua-Adapter] (5.3, 5.4) - Use this lightweight wrapper-/adapter-class as a simple 'interface' between Lua and C++.
  • [CppLua] (5.0 & 5.1) - a C++ wrapper of the Lua API; handles class member functions.
  • [LuaCppInterface] (5.2) - a C++ wrapper of the Lua API. Uses TMP to make calling/passing functions, handling coroutines and filling tables easy and type-safe.
  • [sol2] (5.1, LuaJIT, 5.2 & 5.3) - a fast, powerful and easy C++14 wrapper for the API including support for table indexing, user-defined types, metamethods, coroutines and more.
  • [sol] (5.2) - a C++11 easy to use and type safe wrapper of the Lua API.
  • [Diluculum] (5.1) - A library that intends to make the coexistence of C++ and Lua more harmonious.
  • [Tomaka17's lua wrapper] (5.2) - Simple bindings for Lua using C++11 supporting class and function registration, custom member functions, multiple return values, tables and more.
  • [Luabind] (5.1 & [5.2]) - a template-based binding of C++ classes and functions which uses the Boost library. The library seems to be abandoned by the [original authors], but some more or less actively maintained [forks] exist, e.g. [3] or [4].
  • [LuaBridge] (5.1 & 5.2) - lightweight, dependency-free, template-based library for exporting C++ classes/functions to Lua environments.
  • [LuaBridge3] (5.1 & 5.2 & 5.3 & 5.4) - lightweight, dependency-free, template-based library for exporting C++ classes/functions to Lua environments, next generation with more feature and fixes.
  • [SLB] (5.2) - Simple Lua Binder, a cross platform, small, easy to integrate, template-based library. Very similar to Luabind or boost-python but SLB doesn't require boost or any other dependency.
  • [Luna] (4.0), LunaWrapper (5.1) and LunaFive (5.2) - clean, template-based method of binding a C++ class to Lua. See also [LTN5] and SimplerCppBinding.
  • LunaWrap (5.2 & 5.3) - clean, template based way of pushing arbitrary types to and getting them from Lua, as well as a COMPILE-TIME 'proxy'-function ('int foo(lua_State*)') generator for C++ member functions!
  • [MLuaBind] (5.1) - a template-based binding of C++ classes and functions which uses the Loki library.
  • [MultiScript] (5.1) - a simple library that demonstrates Lua independent C++ interface to bind C++ classes and functions.
  • [OOLua] (5.1, 5.2 & 5.3) - Cross platform template generator binding which has no dependencies.
  • [Selene] (5.1, 5.2, 5.3) - Dead simple and intuitive C++11 bindings supporting class registration and functions.
  • [Sweet Lua] (5.1) - a template-based binding of C++ classes and functions. (MSVC)
  • [lux] - emits functions at compile time via C++ templates and argument overloading
  • [nlua] - 'namespace lua' binding of C/C++ functions, table-like usage, templated based (no boost)
  • [LuaWrapper] - A single header library that provides type-safe and intuitive functions such as luaW_to<T> and luaW_push<T> for arbitrary types, to make managing C++ classes with Lua simple.
  • [Lutok] - Lightweight C++ API for Lua. Lutok provides provides thin C++ wrappers around the Lua C API to ease the interaction between C++ and Lua. These wrappers make intensive use of RAII to prevent resource leakage, expose C++-friendly data types, report errors by means of exceptions and ensure that the Lua stack is always left untouched in the face of errors. The library also provides a small subset of miscellaneous utility functions built on top of the wrappers.
  • [integral] (5.1, LuaJIT, 5.2, 5.3, 5.4) - C++ library with no dependencies for creating Lua bindings.
  • [lua-intf] (5.1, 5.2 & 5.3) - Pure C++11 API and binding for Lua (headers only), supports lua stack API, a higher level API that can refer lua object just like a C++ class object, and can also export C++ class and functions for lua script. The export binding supports custom C++ type, multiple return values, C++ shared pointer, in/out arguments, and can also make argument optional or with default value. The new version also comes with an optional Qt data type mapping (QString, QVariant, QByteArray, etc...).
  • [LuaState] (5.1 & 5.2) - C++11 template library (clang, gcc and VS 12) no boost. Made to be really easy to use and as fast as possible. Lambda based bindings from Lua to C++.
  • [Kaguya] (5.1 , 5.2 , 5.3) - C++03 with boost or C++11 template library.
  • [Lua-Primer] (5.2, 5.3, Eris) - C++11 template library. Not only creates bindings to lua, but does it in a way that supports easy, seamless serialization using Lua Eris. See also [github] descriptions of eris.
  • [Ponder] (5.3) Ponder is a C++ reflection API that can expose the API declared to Lua. Easy to use.
  • [Automagical Bindings] Using C++11 templates to deduce C function arguments to automagically create wrappers to expose native C functions to lua code.

See also:

  • DoItYourselfCppBinding - provides a few simple code fragments for helping Lua and C++ work together
  • LuaGenPlusPlus - luagen++, a C++ header file to generate efficient sequences of Lua C API calls at compile-time via template metaprogramming techniques
  • CppStreamChunkReader - lua_load chunk reader for any C++ std::istream (function)
  • [A comparison of LuaBind, SWIG, OOLua, and toLua++] - One developer's attempt to find a good binding framework for use in a memory-constrained environment.
  • [C++ Binding Benchmarks] - performance benchmarks for various C++:Lua bindings. [Github benchmark project here]

Calling Lua from C/C++

These frameworks and articles are one-way bindings: to call Lua functions from C/C++ passing arguments and getting return values.
  • [A Generic Call Function] (5.0) - from PiL uses a format string to call a global function with a variable number of arguments.
  • [LuaGenericCall] (5.1) - uses code snippets and printf/scanf like format strings to support many types and features.
  • [LuaClassBasedCall] (5.1) - uses code snippets along with C++ constructor overloads and templates, supports nearly all C++ types.
  • [lua_icxx] (5.1) - embeds a Lua interpreter in a C++ application, using an OO API. See also SimpleLuaIcxxExample.
  • SimpleLuaApiExample - example using the C API: the C program loads/runs a Lua script file, sets Lua variables and retrieves return value.
  • CppLuaDataPassing - another more advanced example using regular C API to run a Lua script file with arguments.
  • GettingValuesFromLua - explanation of how to get return values from lua_dostring.
  • CallingLuaFromCpp - example to use the Luna binding (see above) to call Lua from C++.

Embedding Lua in C++

These frameworks are a little broader than the previous ones: they allow your C++ program full interaction with a Lua interpreter, but leave the task of extending Lua to other binding systems (SWIG, tolua++, and others).

  • [lua_icxx]: (pronounced 'lua-ix') Lua interpreter for C++; call Lua functions and User Data (class) methods, use tables, create function sandboxes, use multiple return values, evaluate expressions and scripts, and more. The missing link for use of bindings like SWIG and tolua++.

Automatic binding generators

  • [toLua] (5.2) - If there is a lot of information to bind then automating the process using a binding generator can help. toLua is one such tool. A package file is prepared, which is a cleaned up version of the C/C++ interface. Another advantage of this technique is that less work may be required between Lua versions if the Lua C API changes significantly.
  • [tolua++] (5.1) - an extended version of tolua, with some extra features oriented to c++. See also CompilingToluappWithoutScons (compiling tolua++ without SCons).
  • [CPB] (5.0) - A simple, fast, and powerful binding library for the Lua scripting language. It takes the information from the compilers symbols and generates binding code directly from it. (MSVC)
  • [SWIG] (5.0/5.1) - Simplified Wrapper and Interface Generator, it can generate bindings between your C/C++ code and a variety of scripting languages (Python, Perl, Tcl/Tk, Ruby, ...), including Lua. A big advantage might be that *one* interface file, similar to that used in tolua/tolua++, is used for bindings to all languages supported by SWIG. See also the SWIG docs pertaining to Lua [5].
  • [luna-gen] - lua binding-code generator that supports features such as properties, inheritance (both from lua and c++), namespace, enum, type-checking, c++ exception handling, adopt-policy, g++ and MSVS, operator overloading, user-configurable custum string and number/enum types and so on. Fast compilation and execution speed (much faster than luabind and SWIG), human-readable output codes, no boost dependency.
  • [dub] - Uses Doxygen to parse C++ headers. Supports features such as properties, inheritance, type casting, Lua wrapping, enum, exception handling, operators, custom type binding, C++ template resolution, C++ callbacks with error handling, overloaded methods with runtime type resolution, etc. The generated code is optimized to be as fast as possible (return value optimization, inline objects, etc).
  • [Ponder] - After declaring an API using Ponder it can be automatically exposed to Lua. Ponder is a C++ reflection system that also supports Lua binding, and XML/JSON serialisation.

Proxy wrapper for DLL

Function information can be exported from dynamically linked libraries. [FuBi] describes a method to call these functions from script (or RPC). This functionality can be used from Lua [6].


  • [wxScript] (5.0) - A set of abstract classes to add script-interpreter support to your wxWidgets applications/libraries.

Other languages


  • [Lua-Ada] (5.0) - Lua binding to Ada 95. (link broken)
  • [lua-ada] (5.1) - Ada bindings to the Lua language (public domain) (link broken)
  • [AdaCore ada-lua] (5.2) - Ada bindings to the Lua Language with generic packages to ease binding of Ada types to Lua

Bash Shell

The luabash tool is a dynamically loadable module for the bash shell that provides a bridge between the bash shell and the lua scripting language. This enables complex embedded code segments to be replaced with efficient lua code and the speed of shell scripts to be increased without the drastic need to rewrite existing code.


  • [FreeBASIC] - A open-source BASIC compiler that comes with the Lua headers and libraries.
  • [PBLua] (5.0.2) - a Purebasic library wrapping Lua 5.0.2. (deprecated)
  • [PowerBLua] (5.0) - PowerBASIC include & source for wrapping Lua (work in progress).
  • [BlitzMax] (5.1.2) - a BlitzMax module wrapping Lua 5.1.2 (note: the link currently points into this wiki (which is usually a bad idea in this list) but this will change as soon as the package has its own web site)


  • [OpenCOBOL] (5.1) - Using Lua with OpenCOBOL 1.1
  • [OCLua] - Generated documentation from the OpenCOBOL interface source code


  • [LuaD] (5.1) - Lua bindings and high-level interfaces for the D programming language.
  • [DLua] (5.1) - Lua bindings for the D programming language.


  • [erlua] (5.1) - aims to enable seamless interoperability between Erlang and Lua.
  • [erl-lua] (5.1) - an Erlang linked-in driver that allows embedding Lua into the Erlang VM.
  • [erluna] (5.1) - Lua bindings for Erlang.


  • [Aotus] (5.3) - aims to enable seamless usage of Lua scripts for configuration of Fortran applications, uses the ISO-C-Binding.
  • [f2k3-lua] - Interaction with Lua via the Fortran 2003 ISO-C-Binding.


  • [golua] (5.1) - Lua bindings for Go.
  • [luar] (5.1) - a reflection layer on top of golua API providing a simplified way to publish go functions to a Lua VM..
  • [go-lua-test](5.1) - Examples using various Lua bindings for Go


  • [HsLua] (5.1) - Scripting.Lua binding for Haskell.


  • [LuaJava] (5.1) - allows scripts written in Lua to manipulate components developed in Java (JNI to native Lua) and vice-versa.
  • [JNLua] (5.2, 5.1) - another Java JNI <-> Lua bridge. Includes JSR 223 (Scripting for the Java Platform) provider.
  • [jna-lua] - Java JNA <-> native Lua bridge.
  • [java-lua] - Java JNI Lua bridge. Calls Lua from Java as well as Java callbacks from Lua


  • [Lua for LabVIEW] (5.0, 5.1) - embedding Lua into National Instruments LabVIEW software.


  • [LuaObjCBridge] (5.1) - calling Lua from Objective-C and vice-versa (MacOS X Cocoa).
  • [LuaCore] (5.1) - a LuaObjCBridge-based framework, makes it easy to setup and run Lua scripts.
  • [LuaCocoa] (5.1) - spiritual successor to LuaObjCBridge/LuaCore?, bridge between Lua & Obj-C, and uses Apple's BridgeSupport? to fill in remaining non-ObjC areas (e.g. structs, C functions, inline functions) to access all APIs on the platform. Also includes a command line tool suitable for writing AppleScript? in Lua via ScriptingBridge?. (Mac OS X).
  • [iPhone Wax] (5.1) - a bridge between Lua and all the Objective-C/CocoaTouch classes.
  • [Objective Lua] (5.1) - brings Objective-C-like syntax to Lua.
  • [TLC] (LuaJIT 2) - A lightweight (Under 400 lines, pure Lua) bridge that exposes Objective-C objects&methods to Lua.


  • [ocaml-lua] (5.1.x) - calling Lua from OCaml and vice-versa (tested only in Linux, should work with OS X).


Sol2 Lua

  • [VerySimple.Lua] (5.3) - Delphi XE5-XE7 Lua interface with OOP callback functions for Win32, Win64, Mac OS X, iOS and Android.
  • [Freepascal bindings] (5.1 to 5.3.4) - Free Pascal bindings for the Lua library.
  • [Pascal bindings] (5.1 to 5.3work1) - Pascal bindings for the Lua library, both for Delphi and Freepascal.
  • [LuaPascal] (5.1) - Integrates Lua and Object Pascal languages. Allows Lua to manipulate components developed in Pascal/Delphi.
  • [Lua4Delphi] (5.1) - Delphi and VCL Lua interface and Util functions.
  • LuaDelphi (5.1) - calling Lua from Delphi/Pascal.
  • [Lua4Delphi] (5.1) - for Delphi 2010 and XE.
  • [THlua] (5.0) - Lua distribution for Delphi/Kylix/FreePascal. Includes header files, samples, some utils. For Windows, there are also LuaBinaries and project files for Visual Studio 6. Last updated in 2003.
  • [Delphi-Lua] (5.0) - calling Lua from Delphi/Pascal.
  • [DLua] (5.0) - calling Lua from Delphi/Pascal.
  • [Free Pascal] Pascal units lua, lualib, lauxlib corresponding closely to the usual C API and axiliary library. See LuaInFreePascal.


  • [LuaPerl] (5.1) - calling Perl (5.8 and 5.10 streams) from Lua.
  • [Inline::Lua] (5.1) - calling Lua from Perl (inline).
  • [Data::Lua] (5.1) - parse variables out of Lua code. Relies on Inline::Lua.
  • [re::engine::Lua] (5.1) - supplies the Lua regular expression dialect for Perl.


C++ To Lua

  • [LuaPhpExtension] (5.1) - PHP extension which allows embedding the Lua interpreter in a PHP application.
  • [Nutria] (5.1) - PHP Standard Library written in Lua.


  • LunaticPython[7] (5.1) - Lua/Python two-way bridge. Allows embedding of Lua interpreter in Python programs, and embedding of Python interpreter in Lua programs.
  • [Lupa] (LuaJIT2)(5.1, 5.2, ?5.3) - Embedded Lua in Python. Allows two-way communication between Python and Lua code and tries to adhere to common behaviour on both sides.
  • ffilupa [8] (5.2, 5.3) - A modern two-way bridge between Python and Lua. Integrate Lua into Python using CFFI as backend, which runs fast on both CPython and PyPy?. Inspired by Lupa.


  • RClient [9] (LuaJIT) - LuaJIT client for Rserve which is used to host a (local or remote) R session toward which a connection is established. A library that allows to execute arbitrary R programs within LuaJIT.
  • Lupa (python packaged mentioned above) + reticulate (package for and installed from CRAN within R: - workaround that allows one to access Lua language and objects while in R session by passing through python session as an intermediary set up by the Reticulate. Best to review examples in both LunaticPython and Lupa to understand how to set up and use this workaround.


  • [RubyLuaBridge] (5.1) - calling Lua from Ruby (calling Ruby from Lua is planned)
  • [rub-lua5] (5.0) - calling Lua from Ruby.


  • [ltcltk] (5.1) - a binding of Tcl and Tk for Lua.
  • [LuaTclBridge] (5.0) - a Lua<->Tcl bridge.
  • [TcLux] (4.0) - Tcl extension which embeds Lua into Tcl.
  • See also [Lua] on wiki.


[Terra] is a new low-level system programming language that is designed to interoperate seamlessly with the Lua programming language.

Like C, Terra is a simple, statically-typed, compiled language with manual memory management. But unlike C, it is designed from the beginning to interoperate with Lua. Terra functions are first-class Lua values created using the terra keyword. When needed they are JIT-compiled to machine code.


Lua C Bindings Mod

You can use Terra and Lua as:

A scripting-language with high-performance extensions. While the performance of Lua and other dynamic languages is always getting better, a low-level of abstraction gives you predictable control of performance when you need it.

A JIT compiler for your software's DSLs. Meta-program Terra using Lua. allows you to compile domain-specific languages (DSLs) written in Lua into high-performance Terra code. Embedding Terra-Lua programs in other software as a library allows you to add a JIT-compiler into your existing software.

A stand-alone low-level language. Terra was designed so that it can run independently from Lua. In fact, if your final program doesn’t need Lua, you can save Terra code into a .o file or executable. In this use-case, Lua serves as a powerful meta-programming language. You can think of it as a replacement for C++ template metaprogramming with better syntax and nicer properties.



  • [OiL] (5.1) - ORB in Lua ([CORBA])

Windows COM

  • LuaCom - (5.1/5.0) Lua interface to Microsoft's Component Object Model (COM). Calling COM objects from Lua and implementing COM objects in Lua.

How To Use Comb Binder

Windows .NET

  • [dotLua] (5.0) - A .NET/CLI library, wrapping the Lua API.
  • LuaInterface[10] (5.1) - a library for integration between the Lua language and Microsoft .NET platform's Common Language Runtime (CLR). Lua scripts can use it to instantiate CLR objects, access properties, call methods, and even handle events with Lua functions.
  • [LuaNETInterface][11] (5.1) - a modification of LuaInterface to provide definition of Lua functions using attributes and loaded into the Lua engine using reflection.
  • [NLua] (5.2) - a fork of LuaInterface which is active as of 2014
  • [Eluant] (5.1) - a library with a similar purpose to LuaInterface/NLua, but fixing the memory management problems with LuaInterface/NLua. Active as of 2015.
  • [LunaRoad] - Lua C API (v5.1, 5.2, 5.3, ...) for .NET / represents a flexible platform to work with Lua. Provides Lua interfaces, Lambda expressions, Dynamic features that can be used to generate new API-Layer automatically at runtime, etc. Active as of 2016.


  • [Moonshine] - embedded Lua environment for the Firefox web browser. Allows Firefox extensions to be developed in Lua rather than JavaScript. Implemented as an extension (XPI), written in XUL, JavaScript, and C++.


  • See LuaXml.

See Also

  • BindingEnumsToLua - a technique for synchronizing C enums with a Lua API
  • EasyManualLibraryLoad - greatly simplifies manual loading (GetProcAddress? or dlsym) of Lua 5.1 shared library (.dll or .so)
  • BoundScalarGlobalsOne/BoundScalarGlobalsTwo
RecentChanges · preferences

Lua C Bindings Free

edit · history

Sol3 Lua

Lua Library

Last edited June 6, 2021 9:00 am GMT (diff)